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It started with “strange”
The birth of the quark model started with the discovery of “strange”
particles in cosmic rays circa 1947. Below is an example of a “strange”
particle:
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The age of accelerators

By colliding particles together, we can create different particles that are unstable

and shortlived (E = mc2). These particles decay to stable particles such as

protons, electrons, and the long-lived muons, π(ūd)-mesons and Kaons(ūs) that

were already known from cosmic rays.
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Detector basics..
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Discovery of the charm quark
In 1974, accelerators at Brookhaven (

proton beam on Be target) and SLAC

(e+e− collisions), see a mysterious

bump in the e+e− spectrum!
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The saga continues....
In 1977, an expt with proton beams on targets starts collecting data at
Fermi National Accelerator Lab. in Illinois:
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Discovering Beauty
Fermilab sees a bump at higher energy in the di-muon spectrum
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Interaction cross-sections

= target areaσ

The cross-section is a mea-
sure of the probability that an
interaction will occur.

The term comes from scattering experiments, where the size of
the target (like a proton) determines the interaction probability.

Particle physics unit of cross-section is a barn = 10−24 cm2.

HEP cross-sections are complicated quantities, since they
depend on the nature of the target and incident particle, the
type of interaction involved: EM, strong, weak, the center of
mass energy...etc.
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Measurement variables
Hadronic collisions are a hard scattering of a beam of quarks, antiquarks, gluons

The total COM energy and momentum,
∑
E,

∑ ~P are unknown p p
z

BUT, there is no momentum component
transverse to the colliding beams, there-
fore,

∑
Et = 0

Kinematic variables used in collider physics are

The component of momentum transverse to the beam ,pT .

The rapidity y = 1/2 ln(E + pz)/E − pz)

When m << pt ⇒ y ≈ η = −1/2 ln tan θ/2, pseudorapidity.
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20 years after the discovery of b
Circa 1989, b production cross-sections at the Tevatron proton-antiproton

collider were observed to be > 2× larger than theory predictions. By 1997,

more data had been collected but only a small portion of the b hadron

inclusive cross-section, pT > 6.0 GeV/c, had been probed.

σ(pp̄→ bx) for (pT > pmin
T ) dσ/dy vs yµ (inclusive µ from D0)
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Unanswered questions..

Is the data wrong? -
different measurements,
different experiments...

Is this evidence for new
physics?
Supersymmetric
particles?

What is going on with the 70%
of the cross-section that hasnt
been measured?

Is this a shape or normalization problem?
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THE THEORY
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Strong Production of Quarks
Quantum Chromodynamics describes the theory of strong interactions:
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Quark/Gluon Confinement
BUT: There are complications with the theory predictions

Quarks and gluons are “confined”
within hadrons.

The colliding quarks and gluons
are in protons (anti-protons)

The final state quarks “fragment”
into baryons (qqq) or mesons (qq̄)
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Predicting pp̄ Cross-sections

q

g

g

q

Q

Q
Q

Q

_

_

_

LO Heavy Quark Production

Q
_

Q

g

g

NLO: Gluon splitting

NLO: Flavour excitation

Factorization theorem: factorize physical observable into a
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Probing proton structure
e/µ/ν used to probe Proton Structure:

An event from the HERA e−, p+ collider
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Modeling proton structure
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Parton Density Functions (PDF)

Parton densities with uncertainties extracted
from fits to the data

PDFs (xf(x,Q2)) are
universal global fits to data
on proton structure that are
independent of the
measurement process.

Uncertainties on gluonic function
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Evolution of PDFs
By 2004, recalculating the cross-section with updated PDFs increases
theoretical value by almost 2X!
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Fragmentation Functions
Dmeasured(x) = Dperturbative(x)

︸ ︷︷ ︸

calculable(QCD)

⊗Dnon−perturbative(x)
︸ ︷︷ ︸

non−calculable
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Measured Fragmentation Fncns.

D(x) Measured Dnon−perturbative(x) Extracted

E. Ben Haim et. al. hep-ph/0302157

Non-perturbative functions used must match perturbative assumptions
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Theory updates...
2001: Direct measurement
of b fragmentation at LEP.

2001: New theoretical
method to extract non-pert.
fragmentation funcn

2002: Updated PDFs

dσ(pp̄→ B+X)/dpT vs pT (B+) (CDF)

pT (B+) GeV/c

Cacciari, Nason hep-ph/0204025 (Run I)
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Theory Summary
Agreement with the Run I b cross-section data for pT > 5.0

GeV/c has greatly improved without the need to invoke exotic
sources of excess b quarks. Most of the improvement is due to
improved treatment of experimental inputs.

BUT: There are different theoretical approaches, and new
methods to extract the non-perturbative part of fragmentation
function. Which is the correct approach?

Total cross-sections do not depend on the fragmentation model!

= powerful experimental test of QCD calculations and PDFs.
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THE ACCELERATOR
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The Tevatron
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Tevatron Collider Overview
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Tevatron Performance
In 1985, Tevatron collider begins operating @

√
s = 1.6 TeV

Run I of the Tevatron collected collider data at
√
s = 1.8 TeV

from 1992-1995 with Ltypical = 1.6 × 1031 [particles] cm−2s−1.
∼ 109 pb −1 integrated luminosity was collected by each
collider detector. Event rate = cross-section X luminosity

Run II : Summer 2001 - present. 2.5X more data already!
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THE DETECTOR
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The Collider Detector at Fermilab
Run II: 788 collaborators, 62 institutions, 12 countries
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CDF Run II - Overview
Signals: J/ψ → µµ, displaced b vertices
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The Silicon Vertex Detector
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CDF Data Flow
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processing time ∼ 5µsecs.
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in ∼ 15µsecs + ∼ 15µsecs SVT

processing time

Data logging rate: sustained
rate of 18MB/s (150-200
KB/event)

250 pb −1 ⇒ 480TB on tape
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RUN II MEASUREMENT OF THE J/ψ AND b-HADRON
INCLUSIVE CROSS-SECTIONS

−
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Event Snapshot - J/ψ → µµ event

Et =   5.75 GeV
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Counting J/ψs (pT = 0 to 20 GeV/c)
0 < pT (J/ψ) < 0.25GeV/c

CDF Run II Preliminary    0<Pt(µµ)<0.25 GeV/c
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Transverse momentum
resolution:
δ(pT )/pT = 0.003pT

A detector simulation is used
to model the expected shape
of the J/ψ signal.
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Muon Trigger efficiency
Level 1 tracking efficiency
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After excluding inefficient region

Level 1 single µ trigger efficiency at 1.5 GeV/c is 92%

Plateau is at 98 % except for tracks passing within 1.5 cm of
the center of the COT wire plane where spacers are located
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Detector Acceptance
A detector simulation is used to estimate acceptance:
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J/ψ Cross-sections - Run II
dσ(pp̄→J/ψX)
dpT (J/ψ) = Number of J/ψ

luminosity×acceptance×efficiency×∆pT

σ(pp̄→ J/ψX, |y| < 0.6) vs pT (J/ψ)
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(Run II 3.1+/−0.4 nb)

σ(pp→ J/ψX, | y(J/ψ) |< 0.6) = 4.08 ± 0.02(stat)+0.60
−0.48(syst) µb

Run I σ(pp→ J/ψX, | η(J/ψ) |< 0.6) = 0.30 ± 0.05µb
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Separate Hb → J/ψX from Total
The J/ψ inclusive cross-section includes contributions from

Direct production of J/ψ

Indirect production from decays of excited charmonium
states such as ψ(2S) → J/ψ(1S)π+π−

Decays of b-hadrons such as B → J/ψX

p p

b−hadron direction

J/ψ vertex

µ+

µ−

b−hadron decay vertex

Primary vertex

b-hadrons have long lifetimes
(τ = 1.56ps, cτ = 468µm),
⇒ J/ψ → µµ vertices from
Hb → J/ψX decays will be
displaced from the primary
interaction point.
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Extracting the b-fraction

A maximum likelihood fit to
the flight path of the J/ψ in
the r − φ plane, Lxy is used
to extract the b-fraction.

template

Parameterized
background

CDF Run II Preliminary 5.0 < pT(J/ψ) < 5.5 GeV/c
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Total J/ψ Contribution

b→J/ψ X Contribution
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Prompt J/
is a double Gaussian

ψ

= resolution function

shape from MC
b−>J/ Xψ

1.25 < pT < 1.5 GeV/c, fb = 9.7%

CDF Run II Preliminary 1.25 < pT(J/ψ) < 1.5 GeV/c
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10 < pT < 12 GeV/c, fb = 28%

CDF Run II Preliminary 10 < pT(J/ψ) < 12 GeV/c
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dσ(pp̄→ HbX)/dpT (J/ψ)

Fraction of J/ψs from Hb

CDF Run II Preliminary
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dσ(pp̄→ HbX,Hb → J/ψX)/dpT (J/ψ)

Theory: M.Cacciari, S. Frixione, M.L.

Mangano, P. Nason. G. Ridolfi (Dec, 2003)
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Algorithm to extract dσ/dpT (Hb)

Count the observed number
of b-hadrons in a given
pT (Hb) bin

N b
i =

N∑

j=1

wijN
J/ψ
j

wij is the fraction of b events
in the ith pT (Hb) from the jth

pT (J/ψ) bin obtained from
MC.

Examples of b-hadron Transverse Momentum Distributions
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1.25<pT(J/ψ)<1.5 GeV/c

5.0<pT(J/ψ)<5.5 GeV/c

12.0<pT(J/ψ)<14.0 GeV/c

Correct the observed number of b-hadrons for the kinematic
acceptance
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b-Production cross-section
σ(pp̄→ B+X) vs (pT (B+))

1997

σ(pp̄→ bx) versus (pT (Hb))

CDF Run II Preliminary
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1
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104

dσ
/d

p T
(H

b)
 n

b/
(G

eV
/c

)
|y|<1.0

Run II Inclusive b→J/ψ X, σ(|y|<1.0)=29 ± 6 µb

Run Ib Exclusive B+ corrected for fb=0.4

Run Ia Exclusive B+ corrected for fb=0.4

FONLL CTEQ6M, mb=4.75, µ=µ0, σ=27.5+11 -8.2  µb

FONLL uncertainty from PDF(10%), mass, factorization

2003
Data: σ = 29 ± 6µb, THEORY: σ = 27.5+11

−8.2µb (CTEQ6M, mb = 4.75, µ = µ0)
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Summary
Studies of heavy quark production are precision tests of QCD.

NEW data in 2003:

In 2003, new measurements of the inclusive central J/ψ
cross-sections and the inclusive central b cross-sections
down to pT = 0 GeV/c have been carried out at CDF. These

are the first measurements down to pT = 0 GeV/c at a hadron collider.

Lots of theory advances since 1997:

New PDF fits to proton structure data.

Improved theoretical description of b fragmentation.

Total inclusive b-hadron cross-sections are in reasonable agreement

with theoretical predictions within uncertainties.
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The role of σ(pp̄→ HbX) in HEP
Precision cross-section measurements are sensitive to new
physics beyond the standard model.

Charm and Beauty production dominates at hadron colliders
and form huge backgrounds to Top and new physics searches
which involve b quarks in the final state.

SUSY and Background Cross-Sections
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BACKUP
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QUARKONIA PRODUCTION

Quarkonia = discovery. J/ψ signal at Brookhaven in 1974
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Prompt Quarkonia Production
Quarkonia bound states are non-relativistic. NRQCD LO perturbative expansion is

O(α3
sv

0) as in the color singlet model (CSM) + higher order O(α3
sv

4).

Fragmentation processes ∝ color octet matrix element dominate. CO matrix

elements extracted from fits to data - agree well with Run I data at high pt.
CDF Run II Preliminary

0 4 8 12 16
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→
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) n
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)
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(includes correlated uncertainties)

Data with stat. uncertainties

Systematic uncertainties

Prompt J/ψ production (Run I) Prompt J/ψ production (Run II)
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Back to Υs!
At lower pt NRQCD non-fragmentation diagrams from other octet matrix elements

are important, soft gluon effects cause rates to diverge.

pT (GeV)

B
 d

σ/
dp

T
dy

 (p
b/

G
eV

)

Υ(1S)

10
-1

1

10

10 2

0 5 10 15 20 25 30

Υ discovery (1977) Υ(1S) production (Run I)

No new theoretical predictions for low pT quarkonium at pp̄ yet. BUT:

resummation of color octet matrix elements possible by summer 2004.
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Charmonium Polarization Mystery
BUT Inclusion of color octet in NRQCD leads to a prediction of increasing

transverse polarization of charmonium at high pt.

Method: Fit the production angle,
cos θ∗, distribution to MC distribu-
tion which is a mixture of trans-
verse and longitudinal polariza-
tions. Use lifetime fit method to
separate prompt and b→ J/ψX

dN/d cos θ∗ ∝ (1 + α cos2 θ∗)

CDF Run I

Run II :Need more precise measurements

N.B. Accurate measurements needed to reduce systematic uncertainty on detector accep-
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OTHER INTERESTING PRODUCTION TIDBITS
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High pT b-Jet Production
b-jets include much of the quark fragmentation remnants ⇒ jet
cross-sections have small dependence on fragmentation.
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